MALDI-TOF MS for MNSs typing – high pheno/genotype concordance in 5,743 Swiss

Stefan Meyer¹, Caren Vollmert², Nadine Trost³, Jochen Gottschalk³, Judith Ries³, Alexander Markovic⁴, Laura Infanti⁴, Andreas Buser⁴, Soraya Amar El Dusoquï³, Damiano Castelli⁵, Tina Weingand⁵, Amira Sarraj⁶, Monica C. Braisch⁵, Jutta Thierbach⁵, Beat M. Frey⁵, Christoph Gassner¹

1 Blood Transfusion Service (BTS) Zurich
Swiss Red Cross (SRC)
Dept. of Molecular Diagnostics and R&D (MOC)
Zurich-Schlieren, Switzerland
www.blutspendezurich.ch

2 Agena Bioscience, GmbH, Hamburg, Germany

Background
Transfusion of alloimmunized patients and its prevention may ideally be addressed by expanded blood group antigen matching protocols. For this purpose, beside ABO and RhD, a reasonable set of considerable antigens may include RhC/c(Cr), E/ε, K/k, Jk(a/b), Fy(a/b), M/N and S/s. Blood group genotyping has proven its capability in this context. However, in comparison to K/k, Jk(a/b) and Fy(a/b)¹, published performance data for MNSs genotyping are underrepresented.

Goal of the project
Estimate performance of MALDI-TOF MS for MNSs genotyping: Resulting genotypes and existing serological values for MNSs should be compared and checked for concordance.

Results
Concordant MN phenotypes comprised into 1,711 MM (with 1 Vw), 2,807 MN (with 1 He, 4 Vw and 10 Mt(a)), and 1,208 NN (with 4 Vw and 4 Mt(a+)) all located on GYP (pheno/genotype concordance rate 99,88%, 5,726 of 5,743). Four original MM, 10 MN and 3 NN phenotypes showed discrepancies in comparison to genotyping of which 4 MM (1 no follow up), 3 MN (1 no follow up), and 3 NN were due to serological mis typings. Sequencing of 7 MM genotypes with discrepant MN phenotypes revealed presence of GYP/B hybrid genes, resulting in 1 Mur(GYP.S01)-like, and 6 Sch(GYP.401)-like alleles, all known to encode N-like phenotypes, while GYP/A*02(N) negative. Genotyping for Ss on GYPB provided full concordance of pheno/genotypes for 619 SS, 2,416 Ss and 2,702 ss samples (concordance-rate 99,90%, 5,737 of 5,743). Discrepancies were due to serological mistypings (2 Ss, 1 ss) and “genotyping errors”. We identified a G14SA(Gly49Arg) mutation in the GYPB*03 primer binding-site and two donors with a presumably GYPB*03 null-allele with a G218A(Gly73Asp) substitution (1 Ss, 2 ss) (all shown in Figure 2).

Methods
Genotyping relied on MALDI-TOF MS based SNP-detection at coding nucleotides S9(C/T) and 72(T/G) for M/N and G59 for He (actually on GYPB), 140(C/T/A) for Vw/Hut and 230(C/T) for Mt(a+) on GYP, and 143(T/C) for S/s, intron 4+5(GT) for U-W and intron 1–9103+/1501+C/T, G/C zygosity typing for the “GYPB deletional U-phenotype”, on GYPB (Figure 1). The approach included 10 antigens of the MNSs blood group system, encoded by 8 SNPs on 10 GYP/B alleles, multiplexed into 1 reaction. All genotyping results were compared to existing standard-serological MNSs values of 5,743 Swiss donor samples. Generic and allele-specific PCR-SSPs and Sanger-DNA sequencing revealed genetic backgrounds in cases with confirmed pheno/genotype discrepancies.

Summary
MNSs phenotyping errors had approximately the same frequency as “genotyping errors”, which could all be explained by rarely occurring GYP/B genetic variants, or newly discovered alleles. Consequently, “genotyping errors” may rather be interpreted as specific “indicators”, than profane “errors”. No repetitive genotyping was done and still, there was no evidence at all for any technical SNP-typing error judging all the 57,430 SNP-genotypes, obtained in this study. Only 57 samples, on top of the 5,743 with complete data sets, had single, or multiple SNP-genotype drop-outs, resulting in the low drop-out rate of only 0.98% (no result). MALDI-TOF MS based MNSs genotyping proved to be extremely practical, robust and accurate, and – for donors – may well be considered as a valid stand-alone method and/or valuable addition for serotyping.

Figure 2. Comparison of genotypes and phenotypes observed among 5,743 Swiss donors. Left and right panel show MN and Ss pheno- and genotyping, on GYPA and GYPB, respectively.

(1) Meyer S. et al. (2014), Transfusion. 54:3198-207.