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ARTICLE INFO ABSTRACT

Available online xxxx Blood bankers have focused their energy to secure blood transfusion, and only recently have studies been pub-
lished on the effect of blood donation on iron metabolism. In many facilities, hemoglobin measurement is only

Keywords: performed just before or even during blood donation, but the determination of iron stores is largely ignored.

Iron The 2013 paradox of transfusion medicine is due to the fact that blood donation may be harmful and leads to

[ron metabolism

Transfusion medicine

Iron deficiency anemia

Iron deficiency without anemia
Iron overload
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responders.

iron deficiency with or without anemia, but for other individuals, it may be a healthy measure preventing type
2 diabetes. The purpose of this review is to discuss iron metabolism in the perspective of blood donation, notably
regarding their possible genetic profiles that eventually will discriminate “good” iron absorbers from “bad” iron

© 2013 Published by Elsevier Ltd.

1. Introduction

The importance of iron as well as of iron metabolism has been large-
ly neglected in the transfusion medicine community, even if isolated in-
vestigators have made important contributions in this field [1-9]. For
most of the blood bankers, the pre-donation value of hemoglobin (Hb)
is used as the only hematological criteria allowing the collection of
450 to 500 mL in volunteers. However, all of us clearly know that this
amount of blood corresponds to a depletion of about 200 mg of iron,
and that repetitive donation may lead to iron deficiency with or without
anemia. The problem of iron deficiency without anemia (IDWA) is a dif-
ficult one [10-12]. Nevertheless, it should be addressed by physicians
involved in blood collection. Inversely, blood donation is an accepted
approach to control iron overload, if the patient corresponds to the
many criteria that are in place to select blood donors. Therefore, the ul-
timate development will be the production of “ironomic” tools that will
allow us to rapidly identify who are the individuals able to produce
enough red blood cells without developing iron deficiency after blood
donation, or inversely, who will be protected from iron toxicity by reg-
ular blood donation.

Abbreviations: Hb, hemoglobin; GWAS, genome wide association studies; HH, hered-
itary hemochromatosis; IDWA, iron deficiency without anemia; SNP, single nucleotide
polymorphism; sTff, soluble transferrin receptor; NASH, nonalcoholic fatty liver disease;
T2D, type 2 diabetes; ZPP, zinc protoporphyrin.
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2. Iron deficiency with or without anemia

Iron deficiency anemia is a well-known disorder with guidelines
clearly establishing assessment, investigation and treatment [13]. It
is a major health problem, and iron deficiency anemia ranks number
15 when evaluated in terms of DALYs (disability-adjusted life-years)
[14]. IDWA is still a controversial subject particularly regarding its
clinical impact and physiological consequences. Iron deficiency af-
fects not only erythropoiesis but also cellular functions involving
the immune system, neurotransmitters, DNA synthesis and mito-
chondrial function [15]. Muscle function, fatigue and effect on atten-
tion and cognition are classic features of iron deficiency anemia even
though a recent meta-analysis showed a modest effect of iron sup-
plementation on attention and concentration [16]. However most
studies included in this meta-analysis were underpowered. In the
absence of anemia the association between fatigue and IDWA is
still unclear particularly considering the effectiveness of iron supple-
mentation. This question is important considering the high preva-
lence of iron deficiency without anemia in a French study [17] and
in the United States [18]. Several randomized control trials have
shown a positive effect of iron supplementation on fatigue
[10,12,19]. However, the difficulty of blinding is an important issue
because of the effect of iron on stool color. Administering intrave-
nous iron in a placebo controlled randomized clinical trial is proba-
bly the best design and Krayenbiihl et al. in a subgroup analysis
have shown an improvement in fatigue in IDWA women (ferritin
below 15 pg/L). However the study with 90 participants was too un-
derpowered to show a statistically significant effect on the whole
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group (ferritin below 50 pg/L). Furthermore the question of improving
quality of life is still an unsolved issue. A new ongoing multicenter ran-
domized controlled trial with intravenous iron not yet published but
presented in a conference showed a positive effect on fatigue and qual-
ity of life [20]. All these studies suggest that the improvement of fatigue
is independent of hemoglobin, therefore illustrating the impact of iron
“to maintain key enzymes in the mitochondrial electron transport sys-
tem” [15]. Apart from fatigue and cognitive changes, other studies
have shown a benefit for endurance [21], athletic performance [22],
restless leg syndrome [23], pregnancy [24] and heart failure [25]. All
these studies give arguments to a more individualized definition of ane-
mia and iron deficiency. Normal references based on population data do
not mean “asymptomatic intervals”. For example the Vaucher's study
show in women with prolonged fatigue without anemia not only an im-
provement in fatigue but also a strong improvement in erythropoiesis
(hemoglobin and MCV increase and soluble transferrin receptor (sTfR)
decrease) with iron supplementation in comparison with placebo. In-
terestingly in blood donors with IDWA one week after a blood donation,
iron supplementation in comparison with placebo had no effect on fa-
tigue and muscular function despite the strong improvement in eryth-
ropoiesis [4]. Hence women blood donors are a different population
than women with prolonged fatigue. Nevertheless the Waldvogel's
study showed that hemoglobin regeneration time was shortened and
predonation HB levels were recovered 5 weeks after blood donation
while in the placebo group donors were still iron depleted. This consid-
eration is important to increase blood donor return rates. Therefore
short-term iron supplementation may be a better approach rather
than reducing the frequency of blood donation [26]. More research on
donor harm according to iron depletion is clearly needed.

3. Blood donation and iron deficiency

Whole blood donation of 450-500 mL is inevitably associated with
iron loss of 200-220 mg, depending on the Hb concentration of the
donor [7,27,28], representing 5 to 10% of total body iron. Enteral iron ab-
sorption is the only way for the body to replace iron loss. If all the dietary
iron (heme- and non-heme iron) could be absorbed by the enterocytes,
it would take 15 to 20 days to replace iron loss by blood donation. How-
ever, the capacity to increase iron absorption is limited to a maximum of
5 to 7 mg/day depending on serum ferritin concentration [29], which
means that at least 40 to 60 days are necessary to refill the depleted
iron stores. Only few donors possess sufficient adaptation capacities to
deal with the extreme challenges to iron metabolisms by blood dona-
tions. Most blood donors do not fully compensate iron loss between
consecutive blood donations and as a consequence they develop iron
deficiency [30].

However, it is well known, that preselected long term blood donors
manage to maintain normal Hb concentration over several years de-
spite regular blood donation [31]. In Zurich, some of us examined
multidonation donors for their iron status parameters while undergo-
ing blood donation [32]. Iron parameters such as sTfR and calculated
ferritin index (sTfR/log ferritin) remained stable in these preselected
donors, despite continuous blood donation; the individual hemoglobin
(cHb) remained in the normal range, indicating sufficient iron supply to
erythropoiesis. In contrast, serum ferritin was found to be very variable
among these donors (variation of ferritin levels according to inflamma-
tion was excluded by measuring CRP which was normal in these do-
nors). Obviously, under circumstances of regular blood donation,
ferritin did not appear informative for evaluating actual iron stores, an
observation also made by Hallberg et al. [33]. The recently discovered
iron regulation mechanisms centered on hepcidin [34-36], may now
give detailed insights into the physiology of iron metabolisms in blood
donors. Consistent with the findings in mice experiments [37-39],
Mast et al. have shown that regular blood donation correlates with
low serum hepcidin in parallel with low serum ferritin [31]. A sustained
decrease of serum hepcidin leads to “high” expression of ferroportin

(Fpn1) at enterocytes and macrophages, allowing better iron absorption
in the gut and shifting of iron from the reticuloendothelial store to ery-
throid precursors [40]. In selected individuals, excessive iron loss by
blood donation may be compensated by adequate adjustment of iron
metabolisms allowing these individuals to become long term blood do-
nors. In a prospective study of newly recruited blood donors, we con-
firmed sustained down-regulation of serum hepcidin while on blood
donation [41]. However, female donors who revealed already low
serum hepcidin at study entry allowing only minor down-regulation of
serum hepcidin were much more susceptible to develop significant
iron deficiency anemia and thus were deferred from blood donation. Re-
cently, Mast et al. confirmed these observations and postulate the signif-
icance of hepcidin response to predict tolerance to ongoing blood
donation [42]. However, due to the high variability of hepcidin concen-
tration measured by immunoassays, it might be difficult to use this pa-
rameter in individual cases. The use of mass spectrometry should
prove to be a useful test in this context [43].

4. Hemoglobin, iron, ferritin and blood donation: how to select
blood donors?

The correlation between Ht measurement or Hb concentration deter-
mination with total red cell volume is quite poor and only measure-
ments of both plasma and red blood cell volumes are accurate and
objective indicators of normality in blood composition [44]. Neverthe-
less, Hb is the only laboratory value required before blood donation in
the vast majority of blood establishments. Mostly, these tests are per-
formed on finger stick samples using portable hemoglobin analyzers, es-
pecially on mobile donor drives. Hb values vary between finger stick
samples and venous samples. Finger stick samples yield higher Hb
values than venous samples [45], which have to be taken into account
for developing donor algorithms. Measurement of Hb is not an easy
task and noninvasive methods are evaluated [46,47]. Nevertheless, a
high rate of blood donors are deferred, notably because of anemia
which is most frequently related to iron deficiency [48-50]. Further-
more, a very important factor for developing iron deficiency after
blood donation is the frequency of donation. The Council of Europe rec-
ommends no more than 4 whole blood donations in female and 6 dona-
tions in male donors per year [51]. Some European blood establishments
have even lower total numbers of whole blood donations (e.g. in
Switzerland 3 donations per year in female and 4 in male donors).
With these intervals, the risk of depletion of iron stores should be ac-
ceptable in the vast majority of healthy volunteer donors. However,
many blood donors still develop iron deficiency or even iron deficient
anemia. Considering the shrinking of the donor pool that many blood
donation facilities are going to face in the next years, the interest on
preventing significant iron deficiency and in particular iron deficiency
anemia is increasing. Currently there are many groups investigating lab-
oratory tests and/or prediction models to minimize donor deferral due
to low hemoglobin, one of the main reasons leading to a loss of blood do-
nors. At some blood donation centers, larger hematology analyzers and
other lab tests such as ferritin or zinc protoporphyrin (ZPP) are available.
However the added value of these additional tests to predict iron defi-
ciency or low hemoglobin deferral at the next intended donation is not
yet established. Ferritin is used in some blood centers in order to prevent
donors from developing iron deficiency without anemia or even overt
iron deficient anemia. Ferritin is not a point of care analysis and is rather
cost intensive. O'Meara et al. investigated the value of routine ferritin
testing and recommended an algorithm at the detection of anemia or
iron deficiency without anemia. Donors were offered extending dona-
tion interval, change of diet or oral iron supplementation alone or in dif-
ferent combinations, according to donor's needs and wishes. Donors
were referred to their GP when medical history was abnormal [3].
With this strategy, they could show that introduction of routine ferritin
measurement was improving donor Hb and ferritin when following an
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algorithm for donor counseling based on Hb and ferritin, particularly in
the group of women of childbearing age.

Stern et al. investigated the value of ferritin, HB and red blood cell in-
dices (MCV and MCHC) to predict low HB deferral at the next visit. This
study found that hemoglobin was the best single marker for predicting
low HB at the next visit. Ferritin levels were found to be of additional
value in blood donors with Hb 5 ug/mL and less above Hb cutoff values
[2]. However this finding has not yet been validated prospectively. In a
recent study, Kiss et al. showed that red cell indices are of limited
value for use as diagnostic tools in blood donors at risk for iron deficien-
cy [52]. Finally, because the presence of pica appeared to be associated
with a high probability of iron depletion or deficiency in blood donors,
screening questions for pagophagia may prove useful in the ascertain-
ment of iron deficiency in donors and may identify those who would
benefit from oral iron [53].

ZPP is another interesting indicator of iron stores: it rises in early
iron deficiency, making it a potential useful new marker for early detec-
tion of iron deficiency. ZPP can be measured from finger stick samples
(point of care testing!) and is a relatively inexpensive test which has
been shown in a Dutch cohort of blood donors to be of value in the pre-
diction of low Hb deferral [54]. Before ZPP can be included in donor se-
lection algorithms, more studies are warranted. The Nijmegen group
developed a refined prediction model for low hemoglobin donor defer-
ral comprising of Hb level measured at the previous visit, age, seasonal-
ity, difference in Hb level between the previous two visits, time since the
previous visit, deferral at the previous visit, and total number of whole
blood donations in the past 2 years [55]. With this algorithm they pre-
dict the ability to prevent donor deferral by inviting only donors who
are predicted to be able to donate at the intended donation. An impor-
tant observation is however that different Hb cut off values for blood do-
nation represent a limit for the application of these refined prediction
algorithms in all blood establishments. For instance, the Dutch predic-
tion model could not be validated in Ireland presumably because of dif-
ferent Hb cut off levels [56].

In conclusion measuring hemoglobin at the intended donation is still
the single most important lab test in 2013 to predict future low hemo-
globin deferral. Additional tests such as ferritin and ZPP are in use and
their role still needs to be established. Prediction models using basic
values which can be widely used are under way, but still need valida-
tion, and they promise to be of great value in the near future to detect
earlier blood donors at risk of iron deficiency and iron deficiency
anemia.

5. The spectrum of iron overload diseases

Iron-overload diseases are heterogeneous. However, these diseases
are typically insidious, causing progressive and irreversible organ injury
before clinical symptoms develop. Some iron-overload diseases such as
HFE-associated hemochromatosis or beta-thalassemia are relatively
common, whereas others are rare. Early diagnosis is important since
iron toxicity can be attenuated or prevented.

5.1. Hereditary hemochromatosis

Hereditary hemochromatosis (HH) is a heterogenous disorder at
both genetic and phenotypic levels [57], and the genomics of iron over-
load syndromes is a rapidly growing field of research [58-62]. Since the
discovery of the Cys282Tyr mutation of HFE in 1996, several types (type
1, types 2A and 2B, type 3, types 4A and 4B) have been described, affect-
ing genes corresponding to HFE, hemojuvelin, hepcidin and ferroportin,
respectively. Types 1, 2A, 2B and 3 are autosomal recessive diseases,
whereas types 4A and 4B are autosomal dominant disorders. The differ-
ent clinical presentations as well as the algorithm allowing to evaluate
patients presenting with normal transferrin saturation and elevated fer-
ritin have been described elsewhere [57,63]. A spectrum of treatment
(from bleeding to liver transplantation [64]) is available. Clinical and

molecular investigations, leading to adapted treatment options are
mandatory, because HH may lead to various organ dysfunctions (nota-
bly heart failure [65]) or to the development of hepatocarcinoma [66].

5.2. Secondary hemochromatosis, hemosiderosis

Iron overload is observed as secondary to many disorders and can be
classified in different groups of diseases. In the first group, the “iron-
loading anemias”, disorders such thallassemic syndromes, sideroblastic
anemia, chronic hemolytic anemia, aplastic anemia, and pyruvate
kinase deficiency are observed. In the “chronic liver diseases”, several
pathologies are encountered: hepatitis C infection, nonalcoholic fatty
liver disease (NASH), alcoholic liver disease, or porphyria cutanea
tarda. Finally, accumulation of iron may be secondary to red blood cell
transfusion, long-term hemodialysis with iron substitution, or to or-
phan diseases such as acerulopasminemia, African iron overload or neo-
natal iron overload [67]. In all these diseases, the consequences of iron
overload should be carefully determined.

6. Iron and glucose metabolism; from physiopathology to
transfusion medicine

Type 2 diabetes (T2D) is a worldwide health burden considering that
over 370 million individuals are today affected by the disease. T2D is re-
sponsible for a substantial morbidity and increased mortality. Iron ho-
meostasis is closely linked to glucose homeostasis [68-70].

6.1. Iron toxicity and type 2 diabetes

Iron toxicity observed in hereditary hemochromatosis or during
transfusional iron overload is associated with high prevalence of sec-
ondary diabetes [71]. Conversely, iron deficiency is associated with obe-
sity which is the most common risk factor for developing T2D. How can
iron contribute to abnormal glucose homeostasis?

In the experimental model of iron overload that mimics hemochro-
matosis, mice have a decreased glucose-stimulated insulin secretion
and increased insulin sensitivity [72]. Insulin resistance occurs later dur-
ing the disease in mice and these animals have an increased oxidative
stress detected in pancreatic islets resulting to an excess of 3-cell apo-
ptosis. In contrast to the experimental mice models of hemochromato-
sis, both insulin deficiency and insulin resistance are present in
human hemochromatosis [73]. However, the 3-cell failure observed in
humans with hemochromatosis is probably the primary and prerequi-
site abnormality for developing T2D. This is emphasized by the observa-
tion that insulin sensitivity is restored after bloodletting and insulin
secretory abilities are only partially improved in patients with hemo-
chromatosis who undergo phlebotomy [73,74].

The pathogenesis of T2D in patients with iron overload (hemochro-
matosis) compared to diabetic patients with elevated iron levels (in-
flammatory state and/or elevated iron intake) is probably not similar.
As mentioned, in prediabetic individuals with hemochromatosis, insulin
sensitivity is initially preserved while 3-cell failure is present. In typical
prediabetic patients with no hemochromatosis but elevated ferritin
levels, insulin resistance is present very early in the course of the dis-
ease. This difference may be partially explained by a different response
of the adipocytes to the iron load. In mouse models and humans with
hemochromatosis, the adipokine “adiponectin” secreted by the adipo-
cytes are elevated [72]. This hormone increases the insulin-sensitivity.
Conversely, in diabetes associated with increased iron intake or inflam-
mation, the adiponectin levels are low and may therefore contribute to
the insulin resistance state observed in common T2D. During inflamma-
tion, ferritin levels increase and a negative relationship is observed be-
tween ferritin and adiponectin. In fact, ferritin levels seem to predict
adiponectin secretion in a better way than body mass index.

During iron overload, the oxidative stress is increased by the gener-
ation of free radicals from iron reacting with hydrogen peroxide and the
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trafficking of other micronutrients such as manganese is also altered by
iron stores [75-77]. The oxidative stress contributes to [3-cell failure and
also to hepatic dysfunction and fibrosis. This later alters liver insulin
sensitivity and therefore fails to suppress gluconeogenesis in the liver.

6.2. Iron body status and intake as risk factor for developing type 2 diabetes

Several epidemiological studies and meta-analyses have shown that
dietary heme iron intake and body stores are associated with an in-
creased risk of T2D [78,79]. The risk of developing T2D is approximately
three times greater for an increment of 5 mg/day in dietary heme. Non-
heme iron intake as well as supplemental iron seems not to be associat-
ed with T2D [78,80-82]. Heme iron is readily absorbed in the body and
is therefore more likely to increase iron stores. Ferritin, as biomarker of
iron store, has been consistently shown to be an independent risk factor
for developing T2D. In a recent systematic review and meta-analysis,
Kunutsor et al. have identified nine studies that prospectively evaluated
the risk of developing T2D based upon ferritin levels [83]. The effect of
elevated ferritin on T2D is about 70% higher in individuals with high
ferritin levels compared with those in the bottom quintile. This risk is
only slightly attenuated after adjusting for a large range of potential
T2D risk factors, including inflammatory markers, HDL-levels and tri-
glyceride levels, smoking, BMI, alcohol consumption and liver enzymes.
The critical question underlying these studies is to address whether the
association between ferritin (iron store) and the risk of T2D is a causal
relationship or a simple association. Since environmental factors con-
tribute to ferritin levels, Mendelian randomization studies have been
initiated to answer the question of the direct causal relationship of fer-
ritin levels with diabetes. Two SNPs of the transmembrane protease
serin 6 (TMPRSS6) gene have been associated with ferritin levels in
population-based studies in GWAS studies. So these genetic variants
are positively associated with the levels of ferritin and these SNPs
have been also directly associated with T2D, suggesting that the associ-
ation between ferritin level and diabetes is a causal one [84,85]. Howev-
er these studies need to be replicated in a larger consortium of
population-based studies where all confounding factors are clearly in-
cluded in the analysis of the GWAS to perform a Mendelian randomiza-
tion approach.

6.3. Should iron stores be reduced to treat or to prevent the onset of diabetes?

If the relationship between iron and glucose metabolism is well rec-
ognized, data related to the potential beneficial effects of iron depletion
are relatively rare in common T2D. In several animal models of T2D, ef-
fects of phlebotomy or low iron diet have been studied [72,86]. These
iron-depleted animals were protected in part from diabetes and an in-
crease in insulin secretion and sensitivity was demonstrated [72]. In an-
imals, iron-restriction, without inducing anemia, is also associated with
increased insulin sensitivity. In humans, this observation has been con-
firmed in blood donors [87]. In healthy people, frequent blood donation
leading to depleted iron stores are associated with reduced incidence of
T2D. Insulin sensitivity in these healthy blood donors significantly in-
creased as compared with a control group who had never given blood
and matched for several traditional risk factors for T2D. This positive ef-
fect on insulin sensitivity is coupled with an anticipated reduction of in-
sulin secretion in frequent blood donors. This implies that iron stores, at
least evaluated by the ferritin levels, is not only an independent risk fac-
tor for developing diabetes in healthy individuals but also directly asso-
ciated with insulin resistance. A universal definition of iron overload in
healthy persons need therefore to be addressed since lower levels of fer-
ritin may be a better objective of health, at least from a perspective of
metabolic homeostasis.

Therapeutic phlebotomy is required in patients with HH. Glucose
metabolism has been studied in subjects with newly diagnosed HH
[88]. After normalization of ferritin and transferring saturations by

venesection for 12 months, subjects with HH improved the glucose tol-
erance status mainly by increasing insulin sensitivity of peripheral
tissues.

In common T2D, Paul Cutler investigated almost 25 years ago, the
potential benefits of reducing iron stores in patients with high-ferritin
diabetes in the absence of hemochromatosis [89]. Using the iron chela-
tor deferoxamine, diabetic subjects with high ferritin improved drasti-
cally fasting glucose, HbAlc, and triglycerides and most of the
individuals were free of insulin treatment after iron depletion induced
by an iron chelator. These effects were not observed in the control
group that included diabetic subjects with normal ferritin levels. Blood-
letting was also evaluated in high ferritin T2D patients [90,91]. Three
phlebotomies (500 mL) at 2 week intervals had a substantial benefit in
these patients compared to subjects that were matched for age, BMI
and pharmacological treatment. Reducing iron stores improved HbA1c
and insulin sensitivity up to 12 months after the bloodletting. This
study was controlled but the small numbers of individuals require con-
firmation in a larger sample of subjects. Phlebotomy in these individuals
improved vascular reactivity which may contribute to the amelioration
of insulin action [92].

In patients with metabolic syndrome and clinical evidence of nonal-
coholic fatty liver disease (NASH), phlebotomy was shown to decrease
blood pressure, fasting glucose, HbA1c and lipid profile 6 weeks after
bloodletting [93]. Here again, the results were encouraging but the rel-
ative small numbers of individuals included requires the extension of
the observation in a larger sample of subjects. A multicenter, random-
ized and controlled trial was initiated to assess whether the reduction
of iron stores by phlebotomy could modify cardiovascular outcomes in
patients with peripheral arterial disease [94]. In these symptomatic pa-
tients, the all-cause mortality and nonfatal myocardial infarction or
stroke were not reduced by the bloodletting.

In summary, epidemiological studies in humans and several animal
models have demonstrated a clear association between iron stores
and glucose homeostasis as well as diabetes risk. The intervention stud-
ies to reduce iron stores are still limited and required confirmation in a
larger multicenter randomized trial to fully confirm the potential bene-
ficial effects of reducing iron to treat and/or to prevent the onset of T2D,
NASH or metabolic syndrome.

7. The 2013 paradox of transfusion medicine

The transfusion medicine community is apparently faced with two
apparently contradictory situations: the consequences of blood dona-
tion in the development of iron deficiency with or without anemia
and the place of blood donation to treat iron overload and thus, prevent
T2D. In some donors, blood donation is “dangerous” whereas in others,
it is a beneficial approach and may be a part of the treatment. This par-
adox certainly will open many ethical discussions: to harm or not to
harm, to treat or not to treat; blood donation as being dangerous for
the health of the donor or blood donation as a preventive measure or
a treatment.

The only possible approach to resolve this paradox will be the devel-
opment of a global “omic” approach for iron metabolism that will allow
us to identify “good (those who will benefit from blood donation)” and
“bad (those who will develop iron deficiency with or without anemia)”
donors.

In order to achieve this objective, certain basic requirements need to
be fulfilled: i) the biochemical principles of iron pathways need to be
considered for both, healthy humans and individuals affected by iron
overload and deficiency (anemia), respectively, ii) all data need to be
examined, since these are pheno- as well as genotypes, which need to
be collected in sufficient quality and quantity, and iii) all data need to
be analyzed in an adequate manner (statistics and modeling). Today, in-
formation about the biochemistry of iron homeostasis and pathological
backgrounds, technical platforms for data acquisition and data interpre-
tation tools are in place, and probably more convenient, than ever
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before. There is detailed knowledge about the basic biochemical iron-
pathways [95-97]. And for the most pronounced pathological situations
there are some explanations and some locations identified within these
pathways, as exemplified for iron-refractory iron deficiency anemia
[98,99]. However, borderline phenotypes still lack recognition, full ex-
planation, or identified causes [100]. It may therefore be of advantage
to interpret the presence of iron in the human body without fixed
boundaries between health and disease, in a “global” way.

Additional hidden (genetic) predispositions only becoming appar-
ent upon physiological stress, e.g. malnutrition, or blood donation,
may be expected. Iron metabolism itself may roughly be segmented
into biochemical sub-disciplines and pathological situations may be lo-
cated therein:

(1) iron logistics, that is transport from one place to another, which
includes storage and remobilization (Tf, ZIP14), iron preparation
for transport by reductase and oxidase (Cybrd1, Cp, Heph) and
iron absorption and export (Dmt1, SIc40A1);

(2) regulation of iron homeostasis by signal transduction (Smad
genes), transcription factors (Usf2), growth factors (Gdf15), cell
iron regulators (Irp genes) and the whole world of hepcidin reg-
ulation (HFE, Hfe2, Trf2, Hamp);

(3) sub-pathways like hypoxia-, heme-, hmj-, and Bmp-pathways
(Hif2A, Flvcrl, Neol, Bmp genes);

(4) cross-talk to other biochemical, or immunological processes like Cu-
metabolism, Ca-metabolism, or inflammation (Best1, IL1A, IL6,
IL6R, Stat3) [62,95,96,101].

Blood donors are tremendously important, and fortunately enough,
numerous. Thereby, they fulfill the absolute need for statistical power
in health oriented study-projects. First time donors may be seen as sta-
tistically representative of the average population, however, a potential
bias towards an overrepresentation of individuals unaffected by iron de-
pendent anemia needs to be accounted for. Female donors in child-
bearing age and repetitive first time donors may be considered as
ideal study-subjects for physiological stress of iron depletion, and long
term repetitive donors as humans with a nutritionally or genetically
reasoned tendency for iron accumulation. Certainly and independent
of the above described interpretation, all blood donors are renowned
as “healthy” when donating blood. Blood donors will not only be
“used” as study subjects, but will benefit as humans from universal find-
ings with respect to iron-metabolism, at the same time.

8. Genomic research

Genomic research is critically dependent upon phenotypic data in
general. With respect to genomics of iron metabolism, e.g. “ironomics”,
this requirement is of even more significance, since physiological phe-
notypes must be expected as blended results of alternate and compensa-
tory pathways in either directions or unfixed boundaries between
health and disease, e.g. iron overload and iron deficiency. Consequently,
the best available phenotypic iron measures will be needed to define
distinct subgroups of blood donors and to correlate those with genetic
findings. Individual donor data sets for ferritin, cHb, transferrin, transfer-
ring receptor, sTfr, hepcidin, CRP, and expression of ferroportin may be
considered for this purpose. Whereas some of these values will be deter-
mined upon first blood donation only, others will be measured repeat-
edly in appropriate time frames in order to phenotype “physiological”
stress resulting from repeated blood donations over time.

Detection of genetic donor polymorphism will focus on SNPs. Focus-
ing in on “tagSNPS”, which are representative for haplotypic blocks of
genes, allows the identification of genetic variation without genotyping
every SNP in a chromosomal region [102,103]. However, dependent on
the number of haplotype blocks per gene, which is roughly influenced
by its length in base pairs, single SNPs up to several SNPs of potential in-
fluence on iron metabolism may be identified for every single gene in-
volved [62,101]. This enlarged candidate gene approach is in contrast

to GWAS, which scans the entire genome for common genetic variation.
The rationale behind specifically focusing on allelic variation, is that this
approach is better suited for detecting genes underlying common and
more complex diseases where the risk associated with any given candi-
date gene is relatively small [104-106]. This approach usually uses the
case-control study design.

8.1. A possible protocol

Switching to numbers, a reasonable study protocol for a “global” ap-
proach to iron metabolism may involve 20 to 30 genes with an average
of 5-10 SNPs per gene as detailed earlier, and may collect pheno- and ge-
notype data of some 12,000-18,000 well selected blood donors consid-
ering the cohorts' sex ratio, and percentages of pre-/postmenopausal
women, first time donors, and depleting and nondepleting long term do-
nors [62,101]. This means, that with respect to the genetic analysis alone,
1.2 to 5.4 million SNPs would await their detection. Technically, several
platforms allow for such projects, of which only matrix-assisted laser de-
sorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS)
will be discussed here. MALDI-TOF MS was initially introduced in prote-
omics applications, while the full potential for DNA analysis was demon-
strated in 1995 [107].

Optimized for the detection of nucleic acids the MALDI-TOF MS
(MassARRAY, Sequenom, San Diego, USA) system is currently applied
for SNP genotyping (including insertions and deletions), somatic muta-
tion screening, quantitative gene expression and copy number variation
analysis, and DNA methylation detection [108-112]. The platform sup-
ports multiplexed reactions up to a plex level of 40+ assays (SNPs)
per reaction, acquires and interprets data quickly, gives a quantitative
output and is highly sensitive [113]. MALDI-TOF MS SNP genotyping is
accurate, highly automatable and fast, with a capacity of up to 150,000
SNPs per day [113,114]. Currently, data interpretation seems to be big-
gest task for the “global” genomic approach of iron metabolism. An
oft-cited reason for the lack of success in genetic studies of complex dis-
ease, as may be expected in the field of “ironomics”, is the existence of
interactions between loci. There are numerous difficulties in determin-
ing the biological relevance of statistical gene-gene interactions [115].
The search for such interactions may range from simple exhaustive
search, over various data-mining/machine learning approaches to
Bayesian model selection approaches [115]. Although a starting point,
examination of pairwise interactions of gene polymorphisms, e.g. using
“BOolean Operation-based Screening and Testing” (BOOST), may not
be sufficient [116]. Selected search of three- to five-way interactions
conditioned on significant pair-wise results may finally help to unravel
the intrinsic of ironomics [117].

9. Perspectives for transfusion medicine

The knowledge of the physiology as well as the pathophysiology of
iron metabolism is rapidly changing. The determination of Hb by
using CuSOy4 (a very old fashioned method, but still in use in many
places such as the Service Régional Vaudois de Transfusion Sanguine)
is entering medical history. The future is in the present. The classifica-
tion of blood donors according to a stratification of either iron deficiency
or iron overload (and thus of the potential toxicities of iron) is potential-
ly open. Clinical trials associated with GWAS and “omics” approaches
will certainly help us to progress and transform donor cares and
donor management programs. The future is open!

10. Practice points

Blood donation is always associated with iron depletion. In some in-
dividuals, this may lead to iron deficiency with or without anemia. In
other individuals, this iron depletion may be beneficial, by decreasing
the iron stores which may accumulate according to specific genetic al-
terations or to other mechanisms such as those present in patients
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with metabolic syndrome. Therefore, transfusion medicine is placed in
the paradox of harming some donors, or being beneficial, by preventing
the development of type 2 diabetes.

11. Research agenda

The development of “ironomics” certainly will help physicians in
charge of blood donors by providing tools allowing discriminating
“bad” from “good” donors. However, these venues certainly will open
ethical debates regarding the definition of a healthy voluntary non-
paid donor. Therefore, a combination of research in epidemiology,
human sciences as well as in basic sciences will be needed to resolve
the new paradoxes of transfusion medicine.
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