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1 Data

This section provides additional information on the data and verifies the conditional random-

ization of the phone call.

1.1 Additional information on the data set

The data set consists of the universe of all blood donors who had donated at a local blood drive

with the BTSRC and have blood type A or O. The BTSRC did not include blood types B and AB

in the design because of their limited usefulness. Blood donors are regularly invited to donate at

the blood drive at which they have donated before. Only donors who, according to the medical

information on file, are cleared to donate blood are invited to a blood drive. Each invitation

to a blood drive constitutes one observation in our data set, as it represents an opportunity to

donate blood. Our measure of donations indicates whether a donor showed up at a blood drive,

irrespective of whether a blood transfusion was successfuly performed or not.

Table S1 provides a basic picture of the characteristics of the donors in the sample. Their

average age is 43 years, and there are somewhat more men in the sample than women. In the

12 months before the donors were added to the intervention, they donated on average 0.9 times.

The average propensity to donate upon receiving an invitation was 31 percent. The bottom half

of table S1 shows the breakdown of the different blood types in the study. Not surprisingly,

negative blood types are much less frequent than positive blood types. The phone calls are

mostly concentrated on negative blood types. We include the positive blood types nevertheless,

as they help us identify the coefficients of the control variables and thus add to the precision of

the model. Furthermore, positive blood types are sometimes in short supply as well and treated

with the phone call.
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Individual characteristics Mean Std. Dev.

Age 43.38 13.26

Fraction male 0.57 0.49

Fraction donated on invitation 0.31 0.46

Number of donations in 0.90 0.81

12 months prior to

entering the study design

Frequency of blood types whole sample treatment group

O+ 0.40 0.08

O- 0.09 0.65

A+ 0.43 0.03

A- 0.08 0.24

Table S1: Descriptive statistics. The table summarizes the individual characteristics of the 40,653 donors in the

study. Only donors with blood types A and O were used in the study. Overall, 126,123 invitations were sent out.
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1.2 Checks of the conditional randomization of the phone call

In this section, we check the conditional randomization of the phone call by testing whether

the current phone call is correlated with previous donations. The software tool used by the

BTSRC for administering the phone call ensures that no particular donor, holding constant her

blood type, was targeted by the phone call. However, it is nevertheless useful to empirically

verify its conditional randomization in the data, since it is always possible that the conditional

randomization simply failed by chance.

To empirically test the conditional randomization, we estimate the following linear regres-

sion using ordinary least squares (OLS):

di,t−1 = β0 + β1Tit + γ′Fi + uit , (1)

where the dependent variable di,t−1 is a binary indicator whether donor i gave blood following

the invitation to the previous blood drive at time t − 1. The regression includes the treatment

variable Tit, i.e. whether donor i received a phone call at for the upcoming blood drive at time t,

and a vector of control variables Fi. In the first specification, the vector of control variables only

includes blood types. We cluster the standard errors on individual donors to take any potential

serial correlation within donors into account (1, 2).

In a second specification, we estimate the equation

di,t−1 = β0 + β1Tit + γ′Fit + δj(i)t + uit , (2)

where Fit now includes the donor’s gender, her age and fixed effects for the number of donations

made in the 12 months prior to entering the study. We also add a fixed effect δj(i)t for blood

drive j to which donor i was invited at time t, capturing differences in donations that affect all

donors invited to a particular blood drive j alike. These control variables coincide with the ones

in our main analysis using the FMM as specified in equation 5.
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Table S2 shows the results of the randomization checks. As can be seen in column (1), the

phone call is in no way correlated with previous donations, conditional on the donors’ blood

types. The point estimate is very small and far from being significant. The same is true for the

specification shown in column (2) that includes all control variables of our main analysis. The

point estimate is now even closer to zero. Thus, we conclude that the intervention passes the

randomization check.
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(1) (2)

Treatment Group Tit -0.012 -0.003

(0.010) (0.010)

Blood type O- 0.101*** 0.065***

(0.011) (0.010)

Blood type A+ -0.011*** -0.010***

(0.004) (0.004)

Blood type A- 0.051*** 0.033***

(0.008) (0.007)

Male (=1) 0.041***

(0.004)

Age 0.004***

(0.000)

Number of donations before entering the study

1 donation in the year prior to the study 0.178***

(0.004)

2 donations in the year prior to the study 0.345***

(0.006)

3 donations in the year prior to the study 0.457***

(0.011)

4 donations in the year prior to the study 0.339***

(0.048)

5 donations in the year prior to the study 0.366**

(0.144)

No. of observations 85,529 85,529

No. of donors 35,764 35,764

Table S2: Checks of conditional randomization of the phone call (see equations 1 and 2). The dependent

variable of the estimated equations is the decision to donate at the previous invitation (di,t−1). The number of

observations is lower than in the full sample, because the most recent donation has to be dropped. This also

reduces the number of donors to 35,764. Individual cluster robust standard errors are reported in parentheses.

Level of significance (t-test with H0: coefficient is zero): *p < 0.1, **p < 0.05, ***p < 0.01
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2 Statistical models

This section explains the statistical models we apply for analyzing the treatment effects of the

phone call over time and across donors. It first presents the linear probability model for estimat-

ing the average treatment effects. Subsequently, it discusses the finite mixture model (FMM)

that takes different types of donors into account and estimates the type-specific treatment ef-

fects.

2.1 Linear probability model for estimating average treatment effects

The linear probability model we apply for estimating the average treatment effects of the phone

call on donation rates is based on the following specification:

dit = β0i + β1Tit + β2Ti,t−1 + β3Pit + γ′Fit + δj(i)t + uit , (3)

where the dependent variable dit indicates whether donor i followed the invitation and showed

up at the upcoming blood drive j at time t. The linear probability model is consistent and allows

us to directly interpret the estimated coefficients as average changes of the probability to donate

(3). Hence, the parameter β0i measures donor i’s baseline donation rate, i.e. her propensity to

donate without experiencing any phone calls, that stems from any fixed attribute of the donor.

Note that including individual fixed effects automatically controls for blood types (which is a

fixed attribute of a donor), thus ensuring that the phone call is randomized conditional on the

controls included in this regression.

The parameter β1 captures the immediate treatment effect of a phone call, Tit, at time t. β2

corresponds to the lagged treatment effect of a past phone call, Ti,t−1, and allows us to distin-

guish between habit formation (β2 > 0) and guilt relief (β2 < 0). The parameter β3 measures

the long-term treatment effect of the cumulative number of phone calls, Pit =
∑t

s=1 Tis, the

donor received up to the current invitation at t. Additionally, the parameter vector γ captures
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the effects of time-variant individual characteristics in Fit, which only consists of the donor’s

age in this case. In addition, the specification includes a fixed effect δj(i)t for blood drive j

to which donor i was invited in period t, capturing differences in donations rates that affect

all donors invited to a particular blood drive j alike. We remove the blood-drive fixed effect

using the within-groups transformation (2). We report robust standard errors clustered at the

individual level (1, 2).

We also perform an analysis of heterogeneity in the treatment effects commonly used in

earlier work (4, 5). It tests whether there are differences in treatment effects along dimensions

that are observable. In particular, we examine whether the treatment effect differs by age, gender

and motivation of the blood donor as measured by the number of donations in the year prior to

entering the study design. Specifically, we estimate

dit = β0i + β1Tit + β2Ti,t−1 + β3Pit + β4(Tit × zi) + β5(Ti,t−1 × zi) + β6(Pit × zi) (4)

+ γ′Fit + δj(i)t + uit ,

where the coefficients β4, β5, β6 measure whether the individual characteristic zi of donor i

affects her immediate, lagged and long-term treatment effect. We then also perform an F-test of

the joint hypothesis β4 = β5 = β6 = 0, i.e. that there is no interaction between the characteristic

zi and any of the treatment effects.

2.2 Finite mixture model for estimating type-specific treatment effects

This section describes the FMM to estimate the type-specific treatment effects of the phone

call on donation rates. Even though FMMs have applications in various fields (6), they are still

relatively new to analyzing data from behavioral experiments (7–12).
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2.2.1 Main specification

The FMM assumes the population to be made up by K distinct types of donors. Consequently,

the baseline donation rate and the reactions to phone call are type-specific as indicated by the

subscript k:

dit = β0k + β1kTit + β2kTi,t−1 + β3kPit + γ′Fit + δj(i)t + uit . (5)

The error term uit is normally distributed with mean zero and variance σ2. The control variables

in Fit include a full set of dummies for blood types, age, gender and a full set of dummies for

the number of donations in the 12 months prior to entering the study design. Again, the fixed

effect δj(i)t for blood drive j to which donor i was invited in period t, captures differences in

donations rates that affect all donors invited to a particular blood drive j alike. As above, we

remove the blood-drive effect using the within-groups transformation (2).

Thus, the residual, dit− d̂it, is normally distributed as well, leading to donor i’s type-specific

individual density,

f(βk, γ, σ;Xi) =
T
∏

t=1

1

σ
φ

(

dit − d̂it
σ

)

, (6)

where φ denotes the density function of the standard normal distribution and Xi corresponds to

donor i’s behavior and characteristics. Donor i’s individual likelihood contribution,

ℓ(βk, γ, σ;Xi) =
K
∑

k=1

πk f(βk, γ, σ;Xi) , (7)

equals the sum over all K types of her type-specific densities, f(βk, γ, σ;Xi), weighted by

the relative sizes of the corresponding types πk. Since we do not know a priori to which type

donor i belongs, the types’ relative sizes πk may be interpreted as the ex-ante probabilities of

type-membership. Hence, the FMM’s log likelihood is given by

lnL(Ψ;X) =
N
∑

i=1

ln
K
∑

k=1

πk f(βk, γ, σ;Xi) , (8)
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where the vector Ψ = (π1, . . . , πK−1, β1, . . . , βK , γ, σ) contains all the parameters of the model.

As in the linear probability model for the average treatment effects of the phone call, we also

report individual cluster robust standard errors to take potential serial correlation in the donors’

decisions into account (1, 2).

2.2.2 Estimation using the EM algorithm

As it is generally the case with FMMs, direct maximization of the log likelihood function is

difficult and may encounter several problems. These problems are mainly caused by the partic-

ular non-linear form of the log likelihood function which involves a product between the types’

relative sizes, πk, and the corresponding individual densities, f(βk, γ, σ;Xi) (See (6) for a more

extensive discussion).

However, the maximization problem would be much simpler if individual type-membership

were observable a priori and indicated by tik ∈ {0, 1}. In that case, the individual contribution

to the likelihood function would be given by

ℓ̃(βk, γ, σ;Xi, ti) =
K
∏

k=1

[πk f(βk, γ, σ;Xi)]
tik , (9)

which would directly yield the complete-data log likelihood function

ln L̃(Ψ;X, t) =
N
∑

i=1

K
∑

k=1

tik [ln πk + ln f(βk, γ, σ;Xi)] . (10)

Note that the types’ relative sizes, πk, and the individual densities, f(βk, γ, σ;Xi), enter the

complete-data log likelihood as summands which could be maximized separately. Furthermore,

the maximum likelihood estimates of the types’ relative sizes, π̂k = 1/N
∑N

i=1 tik, would be

given analytically.

The EM algorithm maximizes the complete-data log likelihood while treating the unobserv-

able indicator tik as missing data (13). It iteratively proceeds in two steps, E and M, until it

converges:

10



• In the E-step of the (r+1)th iteration, the EM algorithm augments the missing data given

the model’s actual fit, Ψ(r). By applying Bayes’ rule, it computes each donor’s individual

probabilities of type-membership,

τik =
π
(r)
k f(β

(r)
k , γ(r), σ(r);Xi)

∑K

m=1 π
(r)
m f(β

(r)
m , γ(r), σ(r);Xi)

. (11)

• In the subsequent M-Step, the EM algorithm updates the model’s fit. Hence, it maximizes

the complete-data log likelihood by using the τik from the E-step to replace the missing

indicators tik:

π
(r+1)
k = 1/N

N
∑

i=i

τik , (12)

and

(β
(r+1)
1 , . . . , β

(r+1)
K , γ(r+1), σ(r+1)) =

argmax
β1,...,βK ,γ,σ

N
∑

i=1

K
∑

k=1

τik ln f(β
(r)
k , γ(r), σ(r);Xi) . (13)

The EM algorithm monotonically converges to the maximum likelihood estimate, Ψ̂, since the

likelihood never decreases from one iteration to the next. Convergence is achieved once the

improvement in the log likelihood function between two iterations falls below an arbitrary small

threshold. We applied several randomly generated start values to rule out solutions in which the

EM algorithm converged to a local maximum.

2.2.3 Classification of donors into types

Once we obtained the FMM’s parameter estimates, Ψ̂, we can classify each donor into the type

who’s parameter estimates best fit the donor’s behavior. In particular, we obtain the donor’s

individual probabilities of type-membership,

τik =
π̂kf(β̂k, γ̂, σ̂;Xi)

∑K

m=1 π̂mf(β̂m, γ̂, σ̂;Xi)
, (14)
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based on the FMM’s fitted parameters and the donor’s behavior and characteristics Xi. Accord-

ing to Bayes’ rule, these individual probabilities of type-membership correspond to the donor’s

type-specific likelihood contribution normalized by her overall likelihood contribution.

2.2.4 Cross-validation to determine the optimal number of distinct types of donors

An important aspect of estimating a FMM is to find the optimal number of types, K∗, the model

controls for. If K is too low, the FMM disregards minority types as it lacks the flexibility to

cope with the full extent of behavioral heterogeneity in the data. If K is too high, on the other

hand, the FMM overfits the data as it models random noise instead of systematic behavioral

differences between the types.

Unfortunately, standard statistical tests, such as likelihood ratio tests, are not applicable for

determining K∗, since the distribution of the corresponding test stastistics is unknown (14).

Moreover, classical model selection criteria, such as the Akaike Information Criterion (AIC) or

the Bayesian Information Criterion (BIC), are well known to perform badly when being applied

to determine the optimal number of types (15–18).

We use the cross-validated log likelihood to find the optimal number of types K∗ (19). To

approximate the cross-validated log likelihood, we apply the following procedure: First, we

randomly split the sample into a training and a test sample. Second, we estimate three FMMs

with K = 1, 2, 3 types in the training sample. Third, we use the estimates obtained in the

training sample to evaluate the log likelihood of the model in the test sample. We repeat this

procedure 100 times and average over the log likelihood of the model in the test sample. The

negative of the resulting cross-validated log likelihood is an unbiased estimate of the Kullback-

Leibler distance between the true model with K∗ types and the actual model with K types

(see (19) for further details).

Intuitively, if the actual model has too few types, i.e. K < K∗, raising K will improve the
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out-of-sample fit of the model in the test sample. Hence, the cross-validated log likelihood in the

test sample will increase with a higher K. If the actual model has too many types, i.e. K > K∗,

the model overfits the data as randomness in the training sample drives the parameter estimates.

Thus, the model achieves only a poor out-of-sample fit in the test sample. Consequently, we

choose the FMM that achieves the highest cross-validated log likelihood for determining the

optimal number of types.

Table 2 in the article shows that the FMM with K∗ = 2 types of donors represents the best

compromise between parsimony and flexibility, as it consistently achieves the highest cross-

validated log likelihood. The FMM with K∗ = 2 types yields a substantially higher cross-

validated log likelihood than the linear probability model with just K = 1 representative type,

and a slightly higher cross-validated log likelihood than a FMM with K = 3 types.

Moreover, the FMM with K∗ = 2 types provides a clean classification of donors into types.

The histogram in figure 2 in the article illustrates this clean classification by showing the dis-

tribution of the donors’ individual probabilities of type-membership, τik (see equation 14). It

reveals that almost all donors are cleanly classified either into the first or the second type, since

nearly all of them exhibit a probability of belonging to the first type that is either very close

to zero or very close to one. In contrast, the histograms in figure S1 show that a FMM with

K = 3 types yields an ambiguous classification with substantial overlap between the types.

This substantial overlap, which is especially pronounced between the second and third type,

indicates that a FMM with K = 3 types overfits the data and tries to identify more types than

exist. Consequently, we can identify two cleanly separated types of donors that differ in their

behavior.
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Figure S1: A finite mixture model with K = 3 types yields an ambiguous classification of donors into types.

The histograms show the distribution of the individual probabilities of type-membership, τik, based on the finite

mixture model with K = 3 types (see equation 14). The finite mixture model with K = 3 types overfits the data,

since the resulting classification of donors into types is ambiguous and the types 2 and 3 overlap substantially.
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3 Additional analyses

This section contains additional analyses, mainly to assess the robustness of the results reported

in the article.

3.1 Testing whether crowding-out scales with the incidence of phone calls

In this section, we test whether the crowding-out effect in the group of type 1 donors scales with

the incidence of phone calls, or whether it just represents a one time reduction in donation rates

following the first phone call. We estimate the following alternative specification of the FMM,

dit = β0k + β1kTit + β2kTi,t−1 + β3kPit + β4kI(Pit ≥ 1) + γ′Fit + δj(i)t + uit , (15)

where the additional indicator variable I(Pit ≥ 1) = 1 following the first phone call, and

I(Pit ≥ 1) = 0 otherwise.

Table S3 shows the estimated coefficients of the alternatively specified FMM. It provides

strong evidence that the crowding-out effect in the group of type 1 donors scales with the in-

cidence of phone calls, since β̂31 remains negative and highly significant. In contrast, there is

no evidence that having received the first phone call has any additional effects, as β̂4k is in-

significant for both types of donors. Moreover, the remaining coefficients are robust, and the

alternative specification does not outperform the original one (Likelihood ratio test: P=0.073).
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Dependent variable: Type 1 Type 2

Donation at upcoming blood drive Donors Donors

Type-specific coefficients

Share among the population 0.271 0.729
(0.003) (0.003)

Baseline donation rate 0.463*** -0.072***
(0.007) (0.004)

Immediate treatment effect 0.090*** 0.054***
(0.015) (0.009)

Lagged treatment effect 0.005 0.018*
(0.021) (0.010)

Long-term treatment effect -0.029*** -0.007
(0.011) (0.005)

Has been called 0.025 0.018
(0.021) (0.011)

Common coefficients

Blood type 0- -0.005
(0.008)

Blood type A+ -0.002
(0.003)

Blood type A- 0.000
(0.006)

Male 0.028***
(0.002)

Age 0.003***
(0.000)

1 donation in the year prior to the study 0.128***
(0.003)

2 donations in the year prior to the study 0.250***
(0.005)

3 donations in the year prior to the study 0.324***
(0.010)

4 donations in the year prior to the study 0.202***
(0.035)

5 donations in the year prior to the study -0.002
(0.057)

Error term’s standard deviation 0.366
(0.001)

No. of observations 126,123

No. of donors 40,653

Table S3: Alternative specification of the finite mixture model with K
∗
= 2 types for testing whether

crowding-out scales with the incidence of phone calls (see equation 15). The control variable age is centered

on the sample average of 43.4 years. The model controls for blood drive fixed effects. Individual cluster robust

standard errors are reported in parentheses. Level of significance (t-test with H0: coefficient is zero): *p < 0.1,

**p < 0.05, ***p < 0.01
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3.2 Testing whether the history of phone calls influences their immediate

treatment effect

Here, we analyze whether the history of phone calls influences their immediate treatment effect.

We estimate the following alternative specification of the FMM,

dit = β0k + β1kTit + β2kTi,t−1 + β3kPit + β4k (Tit × Pit) + γ′Fit + δj(i)t + uit , (16)

where (Tit × Pit) corresponds to the interaction between the phone call at t, Tit, and the cumu-

lative number of phone calls received up to t, Pit.

Table S4 shows the estimated coefficients of the alternatively specified FMM. It reveals that

the history of phone calls has no influence on the immediate treatment effect, since the corre-

sponding coefficient, β̂4k, is insignificant for both types of donors. Furthermore, the remaining

coefficients are robust, and the alternative specification does not outperform the original one

(Likelihood ratio test: P=0.147).
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Dependent variable: Type 1 Type 2

Donation at upcoming blood drive Donors Donors

Type-specific coefficients

Share among the Population 0.271 0.729
(0.003) (0.003)

Baseline donation rate 0.463*** -0.072***
(0.007) (0.004)

Immediate treatment effect 0.113*** 0.069***
(0.017) (0.011)

Lagged treatment effect 0.008 0.022**
(0.021) (0.010)

Long-term treatment effect -0.018** 0.001
(0.008) (0.004)

Tit × Pit -0.011 -0.007
(0.010) (0.006)

Common coefficients

Blood type 0- -0.006
(0.008)

Blood type A+ -0.002
(0.003)

Blood type A- 0.000
(0.006)

Male 0.028***
(0.002)

Age 0.003***
(0.000)

1 donation in the year prior to the study 0.128***
(0.003)

2 donations in the year prior to the study 0.250***
(0.005)

3 donations in the year prior to the study 0.324***
(0.010)

4 donations in the year prior to the study 0.205***
(0.035)

5 donations in the year prior to the study 0.005
(0.060)

Error term’s standard deviation 0.366
(0.001)

No. of observations 126,123

No. of donors 40,653

Table S4: Alternative specification of the finite mixture model with K
∗
= 2 types for testing whether the

history of phone calls influences the immediate treatment effect of the phone call (see equation 16). The

control variable age is centered on the sample average of 43.4 years. The model controls for blood drive fixed

effects. Individual cluster robust standard errors are reported in parentheses. Level of significance (t-test with H0:

coefficient is zero): *p < 0.1, **p < 0.05, ***p < 0.01
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